Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Phytomedicine ; 126: 155177, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412667

RESUMO

BACKGROUND: The mortality rate of liver cancer ranks third in the world, and hepatocellular carcinoma (HCC) is a malignant tumor of the digestive tract. Cucurbitacin B (CuB), a natural compound extracted from Cucurbitaceae spp., is the main active component of Chinese patent medicine the Cucurbitacin Tablet, which has been widely used in the treatment of various malignant tumors in clinics, especially HCC. PURPOSE: This study explored the role and mechanism of CuB in the suppression of liver cancer progression. METHODS: Cell Counting Kit-8 (CCK-8) and colony formation assays were used to detect the inhibitory function of CuB in Huh7, Hep3B, and Hepa1/6 hepatoma cells. Calcein-AM/propidium iodide (PI) staining and lactate dehydrogenase (LDH) measurement assays were performed to determine cell death. Mitochondrial membrane potential (Δψm) was measured, and flow cytometry was performed to evaluate cell apoptosis and cell cycle. Several techniques, such as proteomics, Western blotting (WB), and ribonucleic acid (RNA) interference, were utilized to explore the potential mechanism. The animal experiment was performed to verify the results of in vitro experiments. RESULTS: CuB significantly inhibited the growth of Huh7, Hep3B, and Hepa1/6 cells and triggered the cell cycle arrest in G2/M phage without leading to cell death, especially apoptosis. Knockdown of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), a target of CuB, did not reverse CuB elicited cell cycle arrest. CuB enhanced phosphorylated ataxia telangiectasia mutated (p-ATM) and phosphorylated H2A histone family member X (γ-H2AX) levels. Moreover, CuB increased p53 and p21 levels and decreased cyclin-dependent kinase 1 (CDK1) expression, accompanied by improving phosphorylated checkpoint kinase 1 (p-CHK1) level and suppressing cell division cycle 25C (CDC25C) protein level. Interestingly, these phenomena were partly abolished by a deoxyribonucleic acid (DNA) protector methylproamine (MPA). Animal studies showed that CuB also significantly suppressed tumor growth in BALB/c mice bearing Hepa1/6 cells. In tumor tissues, CuB reduced the expression levels of proliferating cell nuclear antigen (PCNA) and γ-H2AX but did not change the terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) level. CONCLUSION: This study demonstrated for the first time that CuB could effectively impede HCC progression by inducing DNA damage-dependent cell cycle arrest without directly triggering cell death, such as necrosis and apoptosis. The effect was achieved through ataxia telangiectasia mutated (ATM)-dependent p53-p21-CDK1 and checkpoint kinase 1 (CHK1)-CDC25C signaling pathways. These findings indicate that CuB may be used as an anti-HCC drug, when the current findings are confirmed by independent studies and after many more clinical phase 1, 2, 3, and 4 testings have been done.


Assuntos
Ataxia Telangiectasia , Carcinoma Hepatocelular , Neoplasias Hepáticas , Triterpenos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/uso terapêutico , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
2.
Methods Cell Biol ; 182: 221-236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359979

RESUMO

The ATR/Chk1 pathway is an important regulator of cell cycle progression, notably upon genotoxic stress where it can detect a large variety of DNA alterations and induce a transient cell cycle arrest that promotes DNA repair. In addition to its role in DNA damage response (DDR), Chk1 is also active during a non-perturbed S phase and contributes to prevent a premature entry into mitosis with an incompletely replicated genome, meaning the ATR/Chk1 pathway is an integral part of the cell cycle machinery that preserves genome integrity during cell growth. We recently developed a FRET-based Chk1 kinase activity reporter to directly monitor and quantify the kinetics of Chk1 activation in live single cell imaging assays with unprecedented sensitivity and time resolution. This tool allowed us to monitor Chk1 activity dynamics over time during a normal S phase and following genotoxic stress, and to elucidate the underlying mechanisms leading to its activation. Here, we review available fluorescent tools to study the interplay of cell cycle progression, DNA damage and DDR in individual live cells, and present the full protocol and image analysis pipeline to monitor Chk1 activity in two imaging assays.


Assuntos
Dano ao DNA , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Fosforilação , Ciclo Celular/genética
3.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279263

RESUMO

Replication stress (RS) is a characteristic state of cancer cells as they tend to exchange precision of replication for fast proliferation and increased genomic instability. To overcome the consequences of improper replication control, malignant cells frequently inactivate parts of their DNA damage response (DDR) pathways (the ATM-CHK2-p53 pathway), while relying on other pathways which help to maintain replication fork stability (ATR-CHK1). This creates a dependency on the remaining DDR pathways, vulnerability to further destabilization of replication and synthetic lethality of DDR inhibitors with common oncogenic alterations such as mutations of TP53, RB1, ATM, amplifications of MYC, CCNE1 and others. The response to RS is normally limited by coordination of cell cycle, transcription and replication. Inhibition of WEE1 and PKMYT1 kinases, which prevent unscheduled mitosis entry, leads to fragility of under-replicated sites. Recent evidence also shows that inhibition of Cyclin-dependent kinases (CDKs), such as CDK4/6, CDK2, CDK8/19 and CDK12/13 can contribute to RS through disruption of DNA repair and replication control. Here, we review the main causes of RS in cancers as well as main therapeutic targets-ATR, CHK1, PARP and their inhibitors.


Assuntos
Dano ao DNA , Neoplasias , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética
4.
OMICS ; 28(1): 8-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190280

RESUMO

Checkpoint kinase 1 (CHK1), a serine/threonine kinase, plays a crucial role in cell cycle arrest and is a promising therapeutic target for drug development against cancers. CHK1 coordinates cell cycle checkpoints in response to DNA damage, facilitating repair of single-strand breaks, and maintains the genome integrity in response to replication stress. In this study, we employed an integrated computational and experimental approach to drug discovery and repurposing, aiming to identify a potent CHK1 inhibitor among existing drugs. An e-pharmacophore model was developed based on the three-dimensional crystal structure of the CHK1 protein in complex with CCT245737. This model, characterized by seven key molecular features, guided the screening of a library of drugs through molecular docking. The top 10% of scored ligands were further examined, with procaterol emerging as the leading candidate. Procaterol demonstrated interaction patterns with the CHK1 active site similar to CHK1 inhibitor (CCT245737), as shown by molecular dynamics analysis. Subsequent in vitro assays, including cell proliferation, colony formation, and cell cycle analysis, were conducted on gastric adenocarcinoma cells treated with procaterol, both as a monotherapy and in combination with cisplatin. Procaterol, in synergy with cisplatin, significantly inhibited cell growth, suggesting a potentiated therapeutic effect. Thus, we propose the combined application of cisplatin and procaterol as a novel potential therapeutic strategy against human gastric cancer. The findings also highlight the relevance of CHK1 kinase as a drug target for enhancing the sensitivity of cytotoxic agents in cancer.


Assuntos
4-Aminopiridina/análogos & derivados , Antineoplásicos , Pirazinas , Neoplasias Gástricas , Humanos , Cisplatino/farmacologia , Quinase 1 do Ponto de Checagem/genética , Procaterol , Neoplasias Gástricas/tratamento farmacológico , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Descoberta de Drogas , Dano ao DNA , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
5.
J Cell Biochem ; 125(1): 89-99, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047473

RESUMO

Checkpoint kinases Chk1, Chk2, Wee1 are playing a key role in DNA damage response and genomic integrity. Cancer-associated mutations identified in human Chk1, Chk2, and Wee1 were retrieved to understand the function associated with the mutation and also alterations in the folding pattern. Therefore, an attempt has been made to identify deleterious effect of variants using in silico and structure-based approach. Variants of uncertain significance for Chk1, Chk2, and Wee1 were retrieved from different databases and four prediction servers were employed to predict pathogenicity of mutations. Further, Interpro, I-Mutant 3.0, Consurf, TM-align, and have (y)our protein explained were used for comprehensive study of the deleterious effects of variants. The sequences of Chk1, Chk2, and Wee1 were analyzed using Clustal Omega, and the three-dimensional structures of the proteins were aligned using TM-align. The molecular dynamics simulations were performed to explore the differences in folding pattern between Chk1, Chk2, Wee1 wild-type, and mutant protein and also to evaluate the structural integrity. Thirty-six variants in Chk1, 250 Variants in Chk2, and 29 in Wee1 were categorized as pathogenic using in silico prediction tools. Furthermore, 25 mutations in Chk1, 189 in Chk2, and 14 in Wee1 were highly conserved, possessing deleterious effect and also influencing the protein structure and function. These identified mutations may provide underlying genetic intricacies to serve as potential targets for therapeutic inventions and clinical management.


Assuntos
Neoplasias , Proteínas Quinases , Humanos , Proteínas Quinases/metabolismo , Quinase 1 do Ponto de Checagem/genética , Mutação , Quinase do Ponto de Checagem 2/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
6.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003585

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor whose median survival is less than 15 months. The current treatment regimen comprising surgical resectioning, chemotherapy with Temozolomide (TMZ), and adjuvant radiotherapy does not achieve total patient cure. Stem cells' presence and GBM tumor heterogeneity increase their resistance to TMZ, hence the poor overall survival of patients. A dysregulated cell cycle in glioblastoma enhances the rapid progression of GBM by evading senescence or apoptosis through an over-expression of cyclin-dependent kinases and other protein kinases that are the cell cycle's main regulatory proteins. Herein, we identified and validated the biomarker and predictive properties of a chemoradio-resistant oncogenic signature in GBM comprising CDK1, PBK, and CHEK1 through our comprehensive in silico analysis. We found that CDK1/PBK/CHEK1 overexpression drives the cell cycle, subsequently promoting GBM tumor progression. In addition, our Kaplan-Meier survival estimates validated the poor patient survival associated with an overexpression of these genes in GBM. We used in silico molecular docking to analyze and validate our objective to repurpose Dapagliflozin against CDK1/PBK/CHEK1. Our results showed that Dapagliflozin forms putative conventional hydrogen bonds with CDK1, PBK, and CHEK1 and arrests the cell cycle with the lowest energies as Abemaciclib.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Biologia Computacional , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Quinase 1 do Ponto de Checagem/genética , Proteína Quinase CDC2/genética
7.
Life Sci ; 332: 122131, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778414

RESUMO

AIMS: Studies in the past have shown that inhibition of the ataxia telangiectasia and Rad3-related (ATR) kinase sensitizes cancer cells to genotoxic anticancer treatments, however, clinical use of ATR inhibitors in combination with DNA damaging chemotherapy is limited due to toxicity in healthy tissues. In this study, we investigated the synergistic anticancer effect between ATR inhibition and oxidative DNA damage induced by the thioredoxin reductase inhibitor auranofin. MAIN METHODS: Cytotoxicity was evaluated by cell viability assays. Western blot, comet assay, immunostaining and flow cytometry were performed to dissect the underlying mechanisms. In vivo efficacy was examined against tumor xenografts. KEY FINDINGS: Nontoxic doses of auranofin alone increased the levels of reactive oxygen species (ROS) in cancer but not noncancerous cells, resulting in oxidative DNA damage and activation of the ATR DNA damage response pathway selectively in cancer cells. Inhibition of ATR in auranofin-treated cancer cells resulted in unscheduled firing of dormant DNA replication origins, abrogation of the S phase cell cycle checkpoint and extensive DNA breakage, leading to replication catastrophe and potent synergistic lethality. Both the antioxidant NAC and the DNA polymerase inhibitor aphidicolin reduced replication stress and synergistic cytotoxicity, implicating replication stress-driven catastrophic cell death resulted from collision between oxidative DNA damage and dysregulated DNA replication. In vivo, auranofin and VE822 coadministration enabled marked regressions of tumor xenografts, while each drug alone had no effect. SIGNIFICANCE: As increased generation of ROS is a universal feature of tumors, our findings may open new routes to broaden the therapeutic potential of ATR inhibitors.


Assuntos
Auranofina , Neoplasias , Humanos , Auranofina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Dano ao DNA , Neoplasias/tratamento farmacológico , Estresse Oxidativo , Inibidores de Proteínas Quinases/farmacologia , DNA/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Linhagem Celular Tumoral , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
8.
Chem Biol Interact ; 385: 110740, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802411

RESUMO

Targeting replication stress response is currently emerging as new therapeutic strategy for cancer treatment, based on monotherapy and combination approaches. As a key sensor in response to DNA damage, ataxia telangiectasia and rad3-related (ATR) kinase has become a potential therapeutic target as tumor cells are to rely heavily on ATR for survival. The tumor suppressor phosphatase and tensin homolog (PTEN) plays a crucial role in maintaining chromosome integrity. Although ATR inhibition was recently confirmed to show a synergistic inhibitory effect in PTEN-deficient triple-negative breast cancer cells, the molecular mechanism needs to be further elucidated. Additionally, whether the PTEN-deficient breast cancer cells are more preferentially sensitized than PTEN-wild type breast cancer cells to cisplatin plus ATR inhibitor remains unanswered. We demonstrate PTEN dysfunction promotes the killing effect of ATR blockade through the use of RNA interference for PTEN and a highly selective ATR inhibitor VE-821, and certify that VE-821 (1.0 µmol/L) aggravates cytotoxicity of cisplatin on breast cancer cells, especially PTEN-null MDA-MB-468 cells which show more chemoresistance than PTEN-expressing MDA-MB-231 cells. The co-treatment with VE-821 and cisplatin significantly reduced cell viability and proliferative capacity compared with cisplatin mono-treatment (P < 0.05). The increased cytotoxic activity is tied to the enhanced poly (ADP-ribose) polymerase (PARP) cleavage and consequently cell death due to the decrease in phosphorylation levels of checkpoint kinases 1 and 2 (CHK1/2), the reduction of radiation sensitive 51 (RAD51) foci and the increase in phosphorylation of the histone variant H2AX (γ-H2AX) foci (P < 0.05) as well. Together, these findings suggest combination therapy of ATR inhibitor and cisplatin may offer a potential therapeutic strategy for breast tumors.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/metabolismo , Neoplasias da Mama/tratamento farmacológico , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Dano ao DNA , Poli(ADP-Ribose) Polimerases/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , PTEN Fosfo-Hidrolase/genética
9.
Cell Mol Biol (Noisy-le-grand) ; 69(8): 209-213, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37715382

RESUMO

Diabetic nephropathy (DN) is considered to be a kidney disease caused by diabetes. In recent years, the incidence of DN has been on the rise, which is also a major challenge in the treatment and prognosis of the disease. Therefore, the search for new biomarkers of DN is urgent and has important clinical significance for reducing the morbidity and mortality of DN. In this study, two datasets GSE1009 and GSE142153 were selected to extract expression profile-based data from DN glomerular samples, and 238 differentially expressed genes (DEGs) were screened. Then, through enrichment analysis, the biological function of DEGs involved in DN disease was preliminarily explored. Subsequently, the STRING website was used to construct a protein-protein interaction map (PPI) to find 10 key genes (CHEK1, ITGB3, COL4A2, COL4A5, COL4A3, COL4A4, CCNB2, CCNB1, TPX2, KIF11), Which play an important role in the progression of DN disease and are closely related to other genes. CHEK1 was the focus of this study, and the expression level of CHEK1 in glomerular epithelial cell models was verified by qRT-PCR. Our results suggest that CHEK1 is a potential biomarker of the degree of damage to DN glomerular epithelial cells.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/genética , Relevância Clínica , Biologia Computacional , Células Epiteliais , Quinase 1 do Ponto de Checagem/genética
10.
Mutat Res ; 827: 111834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531716

RESUMO

DNA replication stress (RS) entails the frequent slow down and arrest of replication forks by a variety of conditions that hinder accurate and processive genome duplication. Elevated RS leads to genome instability, replication catastrophe and eventually cell death. RS is particularly prevalent in cancer cells and its exacerbation to unsustainable levels by chemotherapeutic agents remains a cornerstone of cancer treatments. The adverse consequences of RS are normally prevented by the ATR and CHK1 checkpoint kinases that stabilize stressed forks, suppress origin firing and promote cell cycle arrest when replication is perturbed. Specific inhibitors of these kinases have been developed and shown to potentiate RS and cell death in multiple in vitro cancer settings. Ongoing clinical trials are now probing their efficacy against various cancer types, either as single agents or in combination with mainstay chemotherapeutics. Despite their promise as valuable additions to the anti-cancer pharmacopoeia, we still lack a genome-wide view of the potential mutagenicity of these new drugs. To investigate this question, we performed chronic long-term treatments of TP53-depleted human cancer cells with ATR and CHK1 inhibitors (ATRi, AZD6738/ceralasertib and CHK1i, MK8776/SCH-900776). ATR or CHK1 inhibition did not significantly increase the mutational burden of cells, nor generate specific mutational signatures. Indeed, no notable changes in the numbers of base substitutions, short insertions/deletions and larger scale rearrangements were observed despite induction of replication-associated DNA breaks during treatments. Interestingly, ATR inhibition did induce a slight increase in closely-spaced mutations, a feature previously attributed to translesion synthesis DNA polymerases. The results suggest that ATRi and CHK1i do not have substantial mutagenic effects in vitro when used as standalone agents.


Assuntos
Dano ao DNA , Neoplasias , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Replicação do DNA , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo
11.
Trends Cancer ; 9(9): 700-702, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532649

RESUMO

In a recent study published in Cell, Zhang et al. integrate genome-wide CRISPRi screening with cysteine chemoproteomics to identify functionally relevant oxidation events associated with the cellular response to chemotherapy. This work uncovered checkpoint kinase 1 (CHK1) as a nuclear reactive oxygen species (ROS) sensor that mediates chemoresistance through the suppression of mitochondrial protein synthesis.


Assuntos
Cisteína , Resistencia a Medicamentos Antineoplásicos , Humanos , Cisteína/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Espécies Reativas de Oxigênio/metabolismo , Oxirredução
12.
Cell Death Differ ; 30(7): 1849-1867, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37353627

RESUMO

SCML2 has been found to be highly expressed in various tumors. However, the extent to which SCML2 is involved in tumorigenesis and cancer therapy is yet to be fully understood. In this study, we aimed to investigate the relationship between SCML2 and DNA damage response (DDR). Firstly, DNA damage stabilizes SCML2 through CHK1-mediated phosphorylation at Ser570. Functionally, this increased stability of SCML2 enhances resistance to DNA damage agents in p53-positive, p53-mutant, and p53-negative cells. Notably, SCML2 promotes chemoresistance through distinct mechanisms in p53-positive and p53-negative cancer cells. SCML2 binds to the TRAF domain of USP7, and Ser441 is a critical residue for their interaction. In p53-positive cancer cells, SCML2 competes with p53 for USP7 binding and destabilizes p53, which prevents DNA damage-induced p53 overactivation and increases chemoresistance. In p53-mutant or p53-negative cancer cells, SCML2 promotes CHK1 and p21 stability by inhibiting their ubiquitination, thereby enhancing the resistance to DNA damage agents. Interestingly, we found that SCML2A primarily stabilizes CHK1, while SCML2B regulates the stability of p21. Therefore, we have identified SCML2 as a novel regulator of chemotherapy resistance and uncovered a positive feedback loop between SCML2 and CHK1 after DNA damage, which serves to promote the chemoresistance to DNA damage agents.


Assuntos
Dano ao DNA , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Quinase 1 do Ponto de Checagem/genética , Fosforilação , Linhagem Celular Tumoral
13.
BMC Cancer ; 23(1): 480, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37237279

RESUMO

BACKGROUND: The role of ATF2 in colon cancer (CC) is controversial. Recently, we reported that low ATF2 expression is characteristic of highly invasive tumors, suggesting that ATF2 might also be involved in therapy resistance. 5-Fluorouracil (5-FU) is the best-known chemotherapeutic drug for CC, but drug resistance affects its curative effect. To date, the role of ATF2 in the 5-FU response remains elusive. METHODS/RESULTS: For our study, we had available HCT116 cells (wild-type p53) and HT29 colon tumor cells (mutant p53) and their corresponding CRISPR‒Cas9-generated ATF2-KO clones. We observed that loss of ATF2 triggered dose- and time-dependent 5-FU resistance in HCT116 cells by activating the DNA damage response (DDR) pathway with high p-ATRThr1989 and p-Chk1Ser317 levels accompanied by an increase in the DNA damage marker γ-H2AX in vitro and in vivo using the chicken chorioallantoic membrane (CAM) model. Chk1 inhibitor studies causally displayed the link between DDR and drug resistance. There were contradictory findings in HT29 ATF2-KO cells upon 5-FU exposure with low p-Chk1Ser317 levels, strong apoptosis induction, but no effects on DNA damage. In ATF2-silenced HCT116 p53-/- cells, 5-FU did not activate the DDR pathway. Co-immunoprecipitation and proximity ligation assays revealed that upon 5-FU treatment, ATF2 binds to ATR to prevent Chk1 phosphorylation. Indeed, in silico modelling showed reduced ATR-Chk1 binding when ATF2 was docked into the complex. CONCLUSIONS: We demonstrated a novel ATF2 scaffold function involved in the DDR pathway. ATF2-negative cells are highly resistant due to effective ATR/Chk1 DNA damage repair. Mutant p53 seems to overwrite the tumor suppressor function of ATF2.


Assuntos
Neoplasias do Colo , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Fluoruracila/farmacologia , Dano ao DNA , Fator 2 Ativador da Transcrição/genética
14.
Mol Cancer Ther ; 22(7): 859-872, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37079339

RESUMO

Ataxia telangiectasia and Rad3-related protein (ATR) kinase regulate a key cell regulatory node for maintaining genomic integrity by preventing replication fork collapse. ATR inhibition has been shown to increase replication stress resulting in DNA double-strand breaks (DSBs) and cancer cell death, and several inhibitors are under clinical investigation for cancer therapy. However, activation of cell-cycle checkpoints controlled by ataxia telangiectasia-mutated (ATM) kinase could minimize the lethal consequences of ATR inhibition and protect cancer cells. Here, we investigate ATR-ATM functional relationship and potential therapeutic implications. In cancer cells with functional ATM and p53 signaling, selective suppression of ATR catalytic activity by M6620 induced G1-phase arrest to prevent S-phase entry with unrepaired DSBs. The selective ATM inhibitors, M3541 and M4076, suppressed both ATM-dependent cell-cycle checkpoints, and DSB repair lowered the p53 protective barrier and extended the life of ATR inhibitor-induced DSBs. Combination treatment amplified the fraction of cells with structural chromosomal defects and enhanced cancer cell death. ATM inhibitor synergistically potentiated the ATR inhibitor efficacy in cancer cells in vitro and increased ATR inhibitor efficacy in vivo at doses that did not show overt toxicities. Furthermore, a combination study in 26 patient-derived xenograft models of triple-negative breast cancer with the newer generation ATR inhibitor M4344 and ATM inhibitor M4076 demonstrated substantial improvement in efficacy and survival compared with single-agent M4344, suggesting a novel and potentially broad combination approach to cancer therapy.


Assuntos
Ataxia Telangiectasia , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteínas Mutadas de Ataxia Telangiectasia , Reparo do DNA , Proteínas de Ciclo Celular/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Dano ao DNA , Quinase 1 do Ponto de Checagem/genética
15.
Med Arch ; 77(1): 8-12, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36919124

RESUMO

Background: Prostate cancer (PCa) is one of the most common types of cancer among men. Mutations and accumulation of chromosomal deviations are correlated with the development and aggressiveness of PCa. Cell cycle checkpoint pathways and DNA repair mechanisms are reported to deviate in cancers. Mammalian checkpoint kinase 1/2 (CHEK1/CHEK2) genes act as key signal transducers inside the genomic integrity checkpoints. CHEK1 and CHEK2 gene mutations were reported in a few different types of cancers. In PCa, CHEK2 mutations were studied, but CHEK1 gene variations were not well investigated. Objective: This study aimed to investigate the occurrence of variations in the CHEK1 and CHEK2 genes in PCa in the Jordanian population. Methods: Formalin-fixed paraffin-embedded PCa specimens of radical prostatectomy surgical procedures from 74 Jordanian patients were subjected to DNA extraction, polymerase chain reactions and Sanger sequencing to screen the mutations in selected exons of CHEK1 and CHEK2 tumor suppressor genes. Results: The presence of F281L (T/C) (1.4%) homologous missense point mutation in the kinase domain of the CHEK2 gene and P188P (1.4%) silent point mutation in the kinase domain of the CHEK1 gene. In addition, the 1100delC mutation was not detected in the studied PCa specimens. Conclusion: In line with previous reports, the presence of CHEK2 mutation with a frequency of 1.4% supported the possible role of genetic variants of this gene in the development of PCa. No 1100delC mutation was detected in this study. No association was found in this study between CHEK1 mutations and the development of PCa. Further studies are needed with larger cohorts along with a screening of more exons in order to shed more light on the frequency of CHEK2 gene mutations and their role in the development of PCa in Jordan.


Assuntos
Neoplasias da Mama , Neoplasias da Próstata , Masculino , Humanos , Mutação em Linhagem Germinativa , Quinase 1 do Ponto de Checagem/genética , Prevalência , Estudos Retrospectivos , Quinase do Ponto de Checagem 2/genética , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/genética
16.
Biomolecules ; 13(1)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36671510

RESUMO

Replication stress has been suggested to be an ultimate trigger of carcinogenesis. Oncogenic signal, such as overexpression of CyclinE, has been shown to induce replication stress. Here, we show that various biological stresses, including heat, oxidative stress, osmotic stress, LPS, hypoxia, and arsenate induce activation of Chk1, a key effector kinase for replication checkpoint. Some of these stresses indeed reduce the fork rate, inhibiting DNA replication. Analyses of Chk1 activation in the cell population with Western analyses showed that Chk1 activation by these stresses is largely dependent on Claspin. On the other hand, single cell analyses with Fucci cells indicated that while Chk1 activation during S phase is dependent on Claspin, that in G1 is mostly independent of Claspin. We propose that various biological stresses activate Chk1 either directly by stalling DNA replication fork or by some other mechanism that does not involve replication inhibition. The former pathway predominantly occurs in S phase and depends on Claspin, while the latter pathway, which may occur throughout the cell cycle, is largely independent of Claspin. Our findings provide evidence for novel links between replication stress checkpoint and other biological stresses and point to the presence of replication-independent mechanisms of Chk1 activation in mammalian cells.


Assuntos
Replicação do DNA , Estresse Fisiológico , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Mamíferos/metabolismo , Fosforilação , Estresse Fisiológico/genética
17.
Mol Cell Biol ; 43(1): 1-21, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36720467

RESUMO

Claspin plays multiple important roles in regulation of DNA replication as a mediator for the cellular response to replication stress, an integral replication fork factor that facilitates replication fork progression and a factor that promotes initiation by recruiting Cdc7 kinase. Here, we report a novel role of Claspin in growth recovery from serum starvation, which requires the activation of PI3 kinase (PI3K)-PDK1-Akt-mTOR pathways. In the absence of Claspin, cells do not proceed into S phase and eventually die partially in a ROS- and p53-dependent manner. Claspin directly interacts with PI3K and mTOR, and is required for activation of PI3K-PDK1-mTOR and for that of mTOR downstream factors, p70S6K and 4EBP1, but not for p38 MAPK cascade during the recovery from serum starvation. PDK1 physically interacts with Claspin, notably with CKBD, in a manner dependent on phosphorylation of the latter protein, and is required for interaction of mTOR with Claspin. Thus, Claspin plays a novel role as a key regulator for nutrition-induced proliferation/survival signaling by activating the mTOR pathway. The results also suggest a possibility that Claspin may serve as a common mediator that receives signals from different PI3K-related kinases and transmit them to specific downstream kinases.


Assuntos
Replicação do DNA , Fosfatidilinositol 3-Quinases , Animais , Humanos , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/genética , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
18.
FEBS J ; 290(7): 1719-1724, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35231158

RESUMO

Heritable loss-of-function mutations in genes encoding key regulators of DNA repair and genome stability can result in degenerative progeroid and/or cancer predisposition syndromes; however, such mutations have never been found to affect the Chk1 protein kinase, despite its central role in DNA damage signalling and checkpoint activation. Remarkably, two recent reports now demonstrate that heritable, gain-of-function mutations within the Chk1 C-terminal regulatory domain can cause female infertility in humans. In vitro, oocytes from individuals heterozygous for such mutant Chk1 alleles fail to undergo the first mitotic division after fertilization owing to arrest in G2 phase of the cell cycle. This arrest results from inhibition of the master regulator of mitosis, the cyclin-dependent kinase CDK1, through the same molecular mechanisms that are engaged by activated Chk1 to impose G2 checkpoint arrest in somatic cells bearing DNA damage. Remarkably, the failure of this first zygotic division in heterozygotes in vitro can be rescued through treatment with selective Chk1 inhibitor drugs, allowing development of apparently normal blastocysts and offering hope that a pharmacological solution to this cause of infertility may be possible.


Assuntos
Mutação com Ganho de Função , Proteínas Quinases , Feminino , Humanos , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Fertilidade/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Mutação , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
19.
Cell Biol Toxicol ; 39(3): 795-811, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34519926

RESUMO

Doxorubicin (Dox) is one of the most commonly used anthracyclines for the treatment of solid and hematological tumors such as B-/T cell acute lymphoblastic leukemia (ALL). Dox compromises topoisomerase II enzyme functionality, thus inducing structural damages during DNA replication and causes direct damages intercalating into DNA double helix. Eukaryotic cells respond to DNA damages by activating the ATM-CHK2 and/or ATR-CHK1 pathway, whose function is to regulate cell cycle progression, to promote damage repair, and to control apoptosis. We evaluated the efficacy of a new drug schedule combining Dox and specific ATR (VE-821) or CHK1 (prexasertib, PX) inhibitors in the treatment of human B-/T cell precursor ALL cell lines and primary ALL leukemic cells. We found that ALL cell lines respond to Dox activating the G2/M cell cycle checkpoint. Exposure of Dox-pretreated ALL cell lines to VE-821 or PX enhanced Dox cytotoxic effect. This phenomenon was associated with the abrogation of the G2/M cell cycle checkpoint with changes in the expression pCDK1 and cyclin B1, and cell entry in mitosis, followed by the induction of apoptosis. Indeed, the inhibition of the G2/M checkpoint led to a significant increment of normal and aberrant mitotic cells, including those showing tripolar spindles, metaphases with lagging chromosomes, and massive chromosomes fragmentation. In conclusion, we found that the ATR-CHK1 pathway is involved in the response to Dox-induced DNA damages and we demonstrated that our new in vitro drug schedule that combines Dox followed by ATR/CHK1 inhibitors can increase Dox cytotoxicity against ALL cells, while using lower drug doses. • Doxorubicin activates the G2/M cell cycle checkpoint in acute lymphoblastic leukemia (ALL) cells. • ALL cells respond to doxorubicin-induced DNA damages by activating the ATR-CHK1 pathway. • The inhibition of the ATR-CHK1 pathway synergizes with doxorubicin in the induction of cytotoxicity in ALL cells. • The inhibition of ATR-CHK1 pathway induces aberrant chromosome segregation and mitotic spindle defects in doxorubicin-pretreated ALL cells.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Quinases , Humanos , Proteínas Quinases/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Doxorrubicina/farmacologia , Dano ao DNA , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
20.
Nat Rev Drug Discov ; 22(1): 38-58, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202931

RESUMO

Replication stress is a major cause of genomic instability and a crucial vulnerability of cancer cells. This vulnerability can be therapeutically targeted by inhibiting kinases that coordinate the DNA damage response with cell cycle control, including ATR, CHK1, WEE1 and MYT1 checkpoint kinases. In addition, inhibiting the DNA damage response releases DNA fragments into the cytoplasm, eliciting an innate immune response. Therefore, several ATR, CHK1, WEE1 and MYT1 inhibitors are undergoing clinical evaluation as monotherapies or in combination with chemotherapy, poly[ADP-ribose]polymerase (PARP) inhibitors, or immune checkpoint inhibitors to capitalize on high replication stress, overcome therapeutic resistance and promote effective antitumour immunity. Here, we review current and emerging approaches for targeting replication stress in cancer, from preclinical and biomarker development to clinical trial evaluation.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/uso terapêutico , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Dano ao DNA , Replicação do DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...